عملکرد دستگاه می شود و ما با انتخاب مناسب مواد می توانیم مقاومت را تحت تاثیر قرار دهیم و به این مشکل فائق آییم. چالش کلیدی دیگر ادغام و یکپارچه کردن دستگاه درون خودرو ها و وسایل نقلیه است. محققان در حال حاضر یک ژنراتور تلورید بیسموت را در یک SUV آزمایش کرده اند.
میسنز هم چنین اضافه می کند که در حقیقت دستگاه درون سیستم اگزوز خودرو جای می گیرد. یک مقطع از لوله اگزوز برش داده شده و دستگاه که شبیه به یک انباره یا صدا خفه کن است در آنجا قرار می گیرد. هدف از طراحی بهینه این است که بتوان طراحی را به سمتی پیش برد که سیستم های خودرو د هم ادغام شوند نه اینکه به عنوان یک سیسم جداگانه فضایی برای خود اشغال کنند و این نکته در طراحی این سیستم رعایت شده است.
محققان دو شرکت جنرال موتورز و BSST هم چنین نیاز دارند راه هایی را برای ساخت و تولید حجم بالتری از مواد جدید و ارزان پیدا کنند. میسنز پیش بینی می کند که دست کم 4 سال دیگر ژنراتور های ترموالکتریک را می توان در تولید خودروها مورد استفاده قرار داد.
اساسی برای کاربران درباره تونایی دستگاه خنک کننده ترموالکتبیک داده شده است که با ارائه این نمونه ، مفید است . یک نوع مرحله ترموالکتریک در یک مخزن گرمایی است که دمای اتاق را نگه می دارد و سپس به یا باطری مناسب متصل می شود . یا به دیگر منابع نیروی DC متصل می گردد . طرف سرد نمونه تقریباً به دمای   می رسد . در این لحظه نمونه بدون گرما پمپ می شود و به بیشترین میزان ولتاژ T  می رسد . اگر گرما به تدریج به طرف سرد نمونه اضافه شود ، قسمت سرد دمایش بالا می رود و سرانجام برابر قسمت گرما می شود . در این هنگام دستگاه خنک کننده TE به بیشترین میزان گرما می رسد .دستگاههای خنک کننده ترموالکتریک به یخچالهای مکانیکی کنترل کنند با همان قوانین بنیادی ترمودینامیک و سیستم های سردسازی اگرچه به طور قابل ملاحظه ای در فرم متفاوت هستند عملکردشان به یک صورت می باشد . در سیستم های سردسازی مکانیکی دستگاه فشار برای فشردن هوا به مایع فشار می آورد در میان سیستم سرما راپخش می کند . فضای تبخیر کننده یا منجمد کننده که به نقطه جوش می رسد طی مراحل تدریجی مداوم تبخیر می شود . دستگاه سرد کننده گرما را می گیرد (جذب می کند) به همین علت است که دستگاه سرد
می شود . گرمای جذب شده توسط دستگاه سرد کننده به طرف دستگاه منقبض کننده حرکت می کند . در جایی که سردکننده تراکم را به محیط انتقال می دهد در سیستم سردسازی ترموالکتریک پیش بینی می شود که یک نوع نیمه هادی جای مایع سرد کننده را می گیرد و منقبض کننده جایگزین قسمت گرمایی می شود . دستگاه فشردن هوا جایگزین منبع نیروی DC می شود .
استفاده از نیروی DC  در ترموالکتریک به این علت است که الکترون ها به طرف مواد نیمه هادی حرکت می کنند . در انتهای قسمت سردکننده مواد نیمه هادی گرما را جذب می کنند توسط حرکت الکترون ها و از میان مواد حرکت می کنند و قسمت انتهایی گرم کننده از آن خارج می شود تا زمانی که قسمت انتهایی گرم کننده مواد بطور فیزیکی به مخزن گرما متصل شده است گرما از مواد به طرف مخزن می رود و سپس در عوض به محیط انتقال داده می شود . قائده کلی فیزیکی به روی دستگاههای خنک کننده سرماساز ترموالکتریک جدید نزدیک به سال 1800 بر می گردد . اگرچه نمونه های TE تجاری تا سال 1960 در دسترس نبوده اند اولین کشف مهم مربوط به ترموالکتریسیتی در سال 1821 رخ داد . زمانی که یک دانشمند آلمانی به نام توماس سیبک پی برد که جریان الکتریکی در مدار جریان دارد که از دو فلز مختلف درست شده است که نقطه اتصال فلزات در دو دمای گوناگون می باشد . سیبک واقعاً متوجه نشد هرچند که مقدمات علم برای کشفش کافی نبود و اشتباه فرض می کرد که جریان گرما همانند جریان الکتریکی اثر مشابه دارد . در سال 1834 یک ساعت ساز فرانسوی و یک فیزیک دان به نام جین پولتیر بعد از بررسی اثر تحقیقات سیبک پی بردند که برعکس این اتفاق رخ می دهد وقتی که انرژی گرمایی در نقطه اتصال دو فلز گوناگون جذب شده و در نقطه برخورد دیگر زمانی که جریان الکتریکی در میان محدوده بسته ای جریان دارد ، تخلیه می شود . 20 سال پیش ویلیام تامسون توضیحی برای درک بهتر سیبک و پولتیر و روابطشان داد . هرچند حالا این اتفاق تنها در آزمایشگاه از روی کنجکاوی صورت می گیرد و بدون اینکه کاربرد عملی داشته باشد . در سال 1930 که یک داشمند روسی مطالعاتش را درباره برخی از کاربردهای ترموالکتریک شروع کرده بود و تلاش کرد نیرویی در ژنراتورها ایجاد کند که در محل هایی خارج از زمین مورد استفاده قرار گیرند . سرانجام این دانشمند روسی به نمونه های عملی ترموالکتریک توسعه یافته پی برد .

فصل پنجم

• مصارف فن آوری ترموالکترک

1-5 مصارف فن آوری ترموالکترک:

• یخچال ترمو الکتریکی
• مولد ترمو الکتریکی

2-5 فرایند های ترموالکتریکی:

مقدمه:
فرایند ترموالکتریکی یکی از آخرین پیشرفت های رشته تبرید است که در آن برای گرفتن حرارت از یک محل وجا گذاشتن آن در محل دیگر، بجای استفاده از ماده سرما زا از انرژی الکتریکی به عنوان حامل گرما استفاده می شود. و کاربرد عمده آن در زمینه سرد کننده های قابل حمل،آب سرد کن ها و سرد کن دستگاههای علمی مورد مصرف در تحقیقات فضای است.در شکل بعد نمای از یک سیستم ترموالکتریکی را مشاهده میکنید.شکل 1

شکل 1

سیستم پلیته از یک رشته نیمه هادی تشکیل گردیده است و به گونه ای تعبیه شده اند که یک نوع از حاملهای بار (مثبت یا منفی) بخش زیادی از جریان را حمل نمایند.زوجهای به گونه ای شکل داده شده اند که از نظر الکتریکی با هم سری ولی از نظر گرمای با هم موازی می باشند .(شکل 2).لایه های بیرونی سرامیکی آنها فلزی شده تا بتواند هم گرما وهم جریان الکتریکی را منتقل کنند0

شکل 2

وقتی ولتاژ به سیستم ترمو الکتریک اعمال می شود حامل های بار منفی و مثبت در رشته قرص ها انرژی گرمای را از یک سطح لایه خروجی دریافت و آن را در سطح طرف دیگر آزاد می کنند. سطحی که انرژی گرمای از آن جذب می شود سرد میگردد و سطح مخالف که انرژی گرمای را دریافت می کند گرم می شود. با استفاده از این روش ساده ” تلمبه گرمای “: فن آوری ترمو الکتریکی از قبیل خنک کننده های دیودی کوچک ،یخچال های قابل حمل ، سرد کننده های مایع و غیره استفاده می شود. بسیاری از این واحد ها همچنین می توانند برای تولید توان الکتریکی در شرایطی استفاده کرد.کاربرد های جدید و اغلب جالب ترمو الکتریکی هر روز در حال پیشرفت است.
3-5 نمای کسترده واحد ترمو الکتریکی . شکل 3

شکل 3

4-5 یخپال ترموالکتریکی
مقدمه
در (شکل4) بعد یک واحد ترمو الکتریکی ساده که یک قطب به طرز خاصی عمل آورده می شود که نسبت به قطب دیگرالکترون ها را با سرعت بیشتری از خود عبور دهد.نشان داده شده است.

شکل 4
5-5 طرز کار سیستم ترموالکنریکی شکل 4 قبل:

شکل 5

بخاطر تمرکز الکترونها در ساختمان ملکول(P مثبت وN منفی) جریان که از طریق P بهN میرود احتیاج به انرژی دارد بنابراین هنگام عبور انرژی لازم را از فلز رابط گرفته و آن را سرد میکند (گرمای آنرا می گیرد ).هنگامی که در یک مجموعه ترموالکتریکی این فعل وانفعال پیش میاید بخش سرد سیستم گرمای فزای را که باید سرد شود را به خود می گیرد و مطابق (شکل 4) انرا در بخش گرم رها می کند. اگر قطب منفی یک منبع الکتریکی جریان مستقیم به ماده نوع P وصل شود (جای که کمبود الکترون دارد) صفحه مسی رابط PوNسرد شده وگرمای محیط را میگیرد (مانند سیستم ابتدای تبرید ترموالکتریکی( شکل 5) جریان الکتریکی از باطری واز طریق Pگه کمبود الکترون داردصورت میگیرد وگرمای سطح سرد بالای را گرفته وانرا به سطح سرد زیرین انتقال میدهد.در شکل های بعد می توان اندازه و چگونگی محاسبه ولتاژ را مشاهده کرد.

6-5 مقایسه سیستم های مختلف تبرید:
• انتقال گرما توسط حامل های بار در یک سیستم ترموالکتریک خیلی شبیه به روشی است که خنک کننده های کمپرسی،گرما را در یک سیستم مکانیکی انتقال می دهند.در سیستم خنک کننده کمپرسی،مایعات گردشی گرما را از بار گرمایی به تبخیر کننده ای که گرما در آن میتواند پخش شود منتقل می کند.
7-5 مزایای سیستم ترمو الکتریک:
انتخاب فناوری سرمایشی خنک کننده های ترموالکتریکی به نیاز های خاص هر کاربرد بستگی دارد،اما خنک کننده های ترمو الکتریکی مزایای متفاوتی در مقایسه با سایر فن آوریها دارند.

• خنک کننده های ترموالکتریکیTE هیچ قسمت متحرکی ندارند و بنابراین مراقبت کمتری لازم دارد.
• آزمایش طول عمر نشان داده که طول عمر وسایل ترموالکتریکی TEبیش از هزار ساعت در شرایط کار پایدار است.
• خنک کننده های ترموالکتریکی TEمحتوی کلرو فلورواید کربن یا موارد دیگری نیستند که نیاز به پر کردن مداوم داشته باشد
• کنترل دما تا جزیی ترین درجه به راحتی با سیستم ترموالکتریکی TEممکن است .
• خنک کننده های ترموالکتریکیTE در محیط هایی که خیلی مهم وخیلی حساس یا بسیار کوچک قابل استفاده هستند.
• عملکرد خنک کننده های TEبستگی به محل وموقعیت هندسی ندارد.
• جهت تخلیه گرما در یک سیستم TE کاملا قابل برگشت است. تغیر پلاریته منبع DC باعث می شود که گرما در جهت دیگری تخلیه شود.به این ترتیب یک خنک کننده نیز میتواند ماننده یک گرما زا عمل کند.
خنک کننده های ترموالکتریکیTE در محیط هایی که خیلی مهم وخیلی حساس یا بسیار کوچک

8-5 مولد ترمو الکتریکی( شکل 6)

( شکل 6)

• از طرف دیگر با استفاده از فناوری ترموالکتریکی جریان مستقیم گردشی،گرما را از بار گرمای به گرما گیرهایی که گرما را به محیط بیرون انتقال می هند حمل می کند.هر طرح سیستم ترموالکتریک به تنهایی ظرفیت منحصر به فردی برای انتقال گرما بر حسب وات یا بی تی یو بر ساعت دارد این ظرفیت می توان تحت تاثیر عوامل بسیاری قرار گیرد .مهمترین متغیر ها دماهای محدوده،و مشخصه های الکتریکی وفیزیکی طرح ترموالکتریک به کار برده شده و بازده سیستم پخش گرما هستند.از کاربرد های معمولی ترموالکتریکی پمپ بارهای گرمای در محدوده ای از چندین میلی ولت تا صدها وات می باشد.

فصل ششم

• ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت

ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت

1-6 تاریخپه

دانشمندی به نام «سی بک» در سال ۱۸۲۳ دریافت اگر محل اتصال دو فلز ناهمانند دار
ای اختلاف دمایی باشد، افت ولتاژ ایجاد می شود. بعدها این پدیده به نام «پدیده سی بک» شناخته شد. حالت معکوس این پدیده آن است که اگر افت ولتاژی در محل اتصال این دو فلز حفظ شود، یکی از آنها گرم و دیگری سرد می شود که به آن «پدیده Peltier» می گویند. در سال های بعد دانشمندان دیگری نشان دادند وقتی قطره آبی در محل اتصال سیم های فلزی ساخته شده از آنتیموان و بیسموت ریخته و جریان الکتریسیته اعمال شود، این قطره آب یخ خواهد زد و زمانی که جریان معکوس می شود، یخ ذوب می شود. این موضوع از اصول سرمایش ترموالکتریکی به شمار می رود. علت این پدیده آن است که الکترون ها حامل انرژی گرمایی هستند و می توانند توسط اعمال ولتاژ از باتری، از انتهای سرد به انتهای گرم حرکت کنند. بر این اساس حدود دو دهه بعد موضوع ساخت یخچال های ترموالکتریکی برای خانه ها مطرح شد که در آنها از نیمه هادی ها بهره گرفته شد. بعدها این موضوع به علت محدودیت در سرمایش توسعه چندانی نیافت ولی مثلاً در خودرو برای خنک کردن نوشابه مورد استفاده قرار گرفت. امروزه با توجه به افزایش قیمت حامل های انرژی در سطح جهان، دانشمندان در پی آن هستند که با بهره گیری از مواد ترموالکتریک بتوانند حرارت های ناخواسته را به این مواد اعمال کرده و الکتریسیته تولید کنند. یکی از مشهورترین این حرارت های ناخواسته همانا حرارت خروجی از اگزوز خودرو است که گروه های زیادی از محققان سعی در بهره برداری از این حرارت دارند.
خودروی شما بین ۷۰- ۶۰ درصد از انرژی ورودی را به صورت گرما هدر می دهد. این در حالی است که با افزایش کارایی مواد ترموالکتریک می توان این شرایط را تغییر داده و این حرارت را به الکتریسیته تبدیل کرد.
همان طور که می دانید در موتورهای بخار از حرارت برای تولید بخار جهت به حرکت درآوردن تجهیزات استفاده می شود. همان طور که بیان شد، در تجهیزات ترموالکتریکی نیز به طریق مشابه می توان از حرارت برای حرکت الکترون ها در مسیر مورد نیاز بهره جست. از آنجایی که در اکثر تجهیزات مکانیکی و الکتریکی حرارت غیرمفید تولید می شود، می توان با بهره گیری از مواد ترموالکتریک از این حرارت مقادیر زیادی انرژی مفید به دست آورد.
مطالب فوق بدان معنی است که با قرار دادن قطعات کوچکی از مواد ترموالکتریک در سطوح گرم یا داغ(مثل اگزوز خودروها یا پروسسور کامپیوترها)، می توان انرژی تولید کرد.
البته مشکل اینجا است که مواد ترموالکتریک کنونی دارای راندمان پایینی هستند. این راندمان توسط عدد ZT (ZT figure) تعریف می شود. باید گفت به رغم چندین دهه پژوهش هنوز بهترین مواد ترموالکتریک دارای عدد ZT نزدیک به یک هستند و فقط زمانی که بتوان این عدد را به حدود ۳ تا ۴ رساند، می توان این روش را با دیگر روش های تولید برق مقایسه کرد. (پیوست 1)

2-6 بهبود راندمان

یکی از متغیرهای عدد ZT، مقدار حرارتی است که یک قطعه مشخص از مواد ترموالکتریک می تواند در یک لحظه به برق تبدیل کند. امروز به اثبات رسیده است که می توان این خاصیت را بهبود بخشید. جوزف هرمانس و ولادیمیر یوویچ از دانشگاه ایالتی اهایو روشی را برای تغییر این خاصیت در ماده تلورید سرب(مرسوم ترین ماده ترموالکتریک) یافته اند.
اساساً درون ماده تلورید سرب تعداد معدودی الکترون با امکان دارا بودن انرژی کافی برای تبدیل


دیدگاهتان را بنویسید